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The Challenges of Next Generation :¢*
Science in the Information Age  “v

Petabytes of complex data explored and analyzed by
1000s of globally dispersed scientists, in hundreds of teams

¢ Flagship Applications
[ High Energy & Nuclear Physics, AstroPhysics Sky Surveys:
TByte to PByte “block” transfers at 1-10+ Gbps
[ eVLBI: Many real time data streams at 1-10 Gbps
[ Biolnformatics, Clinical Imaging: GByte images on demand
4 HEP Data Example:
[ From Petabytes in 2003, ~100 Petabytes by 2007-8,
to ~1 Exabyte by ~2013-5.
€ Provide results with rapid turnaround, coordinating
large but limited computing and data handling resources,
over networks of varying capability in different world regions

€ Advanced integrated applications, such as Data Grids,
rely on seamless operation of our LANs and WANSs

[ With reliable, quantifiable high performance



Large Hadron Collider (LHC) ¢
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LHC Data Grid Hierarchy: ¢™

Developed at Caltech M
CERN/Outside Resource Ratio ~1:2
~PByte/sec Tier0/(X Tier1)/(X Tier2) ~1:1:1

Online System | ~100-1500
MBytes/sec

CERN Center
PBs of Disk;
_Tape Robot
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Tier 0 +1

Tier1 ~2.5-10 Gbps
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Emerging Vision: A Richly Structured, Global Dynamic System




ESnet Accepted Traffic 1/90 — 1/04

Exponential Growth Since ’'92;

Annual Rate Increased from 1.7 to 2.0X

Per Year In the Last 5 Years
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History of Bandwidth Usage — One Large
Network; One Large Research Site
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SLAC Traffic ~300 Mbps; ESnet Limit

Growth in Steps: — 10X/4 Years

Projected: —2 Terabits/s by —2014




Fall 2003: Transatlantic Ultraspeed TCP Tranfers
Throughput Achieved: X50 in 2 years

Terabyte Transfers by the Caltech-CERN Team
¢Nov 18: 4.00 Gbps IPv6 Geneva-Phoenix (11.5 kkm)
¢ Oct 15: 5.64 Gbps IPv4 Palexpo-L.A. (10.9 kkm)

3 Across Abilene (Internet2) Chicago-LA,
Sharing with normal network traffic

3 Peaceful Coexistence with a Joint Internet2-

Telecom World VRVS Videoconference

Juniper,

Nov 19: 23+ Gbps TCP: Caltech, | Sl He
SLAC, CERN, LANL, UvA, Manchester e




HENP Major Links: Bandwidth
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Continuing the Trend: —1000 Times Bandwidth Growth Per Decade;
We are Rapidly Learning to Use Multi-Gbps Networks Dynamically




HENP Lambda Grids:
N4 ke Fibers for Physics

4 Problem: Extract “Small” Data Subsets of 1 to 100 Terabytes
from 1 to 1000 Petabyte Data Stores

¢ Survivability of the HENP Global Grid System, with
hundreds of such transactions per day (circa 2007)
requires that each transaction be completed in a
relatively short time.

¢ Example: Take 800 secs to complete the transaction. Then

Transaction Size (TB) Net Throughput (Gbps)

1 10
10 100
100 1000 (Capacity of

Fiber Today)
¢ Summary: Providing Switching of 10 Gbps wavelengths
within ~2-4 years; and Terabit Switching within 5-8 years
would enable “Petascale Grids with Terabyte transactions”,
to fully realize the discovery potential of major HENP programs,
as well as other data-intensive research.



GLORIAD: Global Optical Ring
US-RU-Cn)

“Little Gloriad” (O 3)Launched Jahuary 12; to OC192 in 2005

Beijing

: f \ Hong Kong

Zabajkal’sk,
Manzhouli

Amsterdam - 7.

Also Important for
Intra-Russia Connectivity

“Moscow

T. Schindler / National Science Foundation



GLIF: Global Lambda Integrated Facility

“GLIF 1s a World Scale
Lambda based Lab for
Application and
Middleware
development, where
Grid applications ride on
dynamically configured
networks based on
optical wavelengths ...

GLIF will use the
Lambda network to
support data transport
for the most demanding
e-Science applications,
concurrent with the
normal best effort
Internet for commodity
traffic.”
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Transition beginning now to optical, multi-
wavelength Community owned or leased
fiber networks for R&E

- National Lambda Rail (NLR)
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¢Coming Up Now

v ks be Initially 4 10G

Wavelengths
¢Full Footprint Ops
by 3Q or 4Q04
¢ Internet2 HOPI
Initiative (W/HEP)

¢T0 40 10G
Waves in Future

¢ Regional Dark
Fiber Initiatives
In 18 U.S. States




ICFA Dark Fiber in Eastern Europe
S Poland: PIONIER Network

2650 km Fiber
Connecting
16 MANs; 5200 km
and 21 MANs by 2005

Support
¢ Computational Grids
Domain-Specific
Grids
# Digital Libraries
€ Interactive TV

Installed fiber

@ PIONIER nodes

‘ Add,l Fibers for """""""" Fibers planned in 2004
. g m . A PIONIER nodes planned in 2004
e-Regional Initiatives ’
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¢ Classical, HENP Data Grids, and
N [0 4 Now Service-Oriented Grids
€ The original Computational and Data Grid concepts are
largely stateless, open systems: known to be scalable
= Analogous to the Web

€ The classical Grid architecture has a number of implicit
assumptions

= The ability to locate and schedule suitable resources,
within a tolerably short time (i.e. resource richness)

= Short transactions with relatively simple failure modes

€ HENP Grids are Data Intensive & Resource-Constrained
= 1000s of users competing for resources at 100s of sites
= Resource usage governed by local and global policies
= Long transactions; some long queues

¢ HENP = Stateful, End-to-end Monitored and Tracked Paradigm
= Adopted in OGSA, Now WS Resource Framework




7¢7  The Move to OGSA and then
A [ Managed Integration Systems
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The GAE: key to “success” or “failure” for physics & Grids in the LHC era:
=» 100s - 1000s of tasks, with a wide range of computing, data

and network resource requirements, and priorities
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GAE Architecture

4 Analysis Clients talk
standard protocols to
the “Grid Services Web
Server”, a.k.a. the
Clarens data/services
portal.

€ The Clarens portal hides
the complexity of the Grid
Services from the client,
but can expose it in as
much detail as req’d for

 XML/RPC

Grid Services

/— Web Server

Scheduler 4
- Catalogs

Abstract
lanne — Metadata

Partially-
Abstract

— Virtual

Planne — Data e.g. monitoring.
— ‘ Monitoring Applications 4 Key features: Global
oo Replica Sche_dul_er, Catalog_s,
- Monitoring, and Grid-
wide Execution service.
v Clarens servers form a
Exe.cu:hon Global Peer network.
P Priority
| Manager |
6rid Wide
P Execution
|_Service |
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Managing Global Systems: Dynamic
Scalable Services Architecture

MonALISA: http://monalisa.cacr.caltech.edu
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% UltraLight Collaboration:
kg http://ultraliaht.caltech.edu

¢ Caltech, UF, FIU,
UMich,
SLAGC,FNAL,
MIT/Haystack,
CERN, UVER](Rio),
NLR, CENIC,

Flagship Applications
(HENP, VLBI, Oncology, ...)

Application Frameworks

UCAID,
Translight, 2
UKLight, B Grid Middleware
Netherlight, UVA, = I
cr
Taliwatlonal Lambda Rail || = Grid/Storage
] go Management
5 ‘-t d -
] ‘ &l i
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ICFA) Networks, Grids and HENP \ﬁ‘

R 54

€ Network backbones and major links used by HENP experiments
are advancing rapidly

[ To the 2.5-10G range in < 2 years; much faster than Moore’s Law
€ HENP is learning to use long distance 10 Gbps networks effectively
(J 2003 Developments: to 5.6+ Gbps flows over 11,000 km

¢ Transition to a community-owned or leased fibers for R&E has begun
in some areas [us, ca, nl, pl, cz, sk] or is considered [de, ro; IEEAF]
¢ End-to-end Capability is Needed, to Reach the Physics Groups:
J Removing Regional, Last Mile, Local Bottlenecks and
Compromises in Network Quality are now
On the critical path, in all world regions
& Digital Divide: Network improvements are especially needed
in SE Europe, Latin America, China, Russia, Much of Asia, Africa
¢ Work in Concert with Internet2, Terena, APAN, AMPATH;
DataTAG, the Grid projects and the Global Grid Forum



Recommendation 1: Q
— E— ¥ 2
ICFA Work on the Digital Divide S

from Several Perspectives

€ Work on Policies and/or Pricing: pk, in, br, cn, SE Europe, ...

[ Share Information: Comparative Performance and BW Pricing

O Find Ways to work with vendors, NRENs, and/or Gov’ts

O Exploit Model Cases: e.g. Poland, Slovakia, Czech Republic
€ Inter-Regional Projects

[ South America: CHEPREO (US-Brazil); EU ALICE Project

O GLORIAD, Russia-China-US Optical Ring

3 Virtual SILK Highway Project (DESY): FSU satellite links
€ Help with Modernizing the Infrastructure

[ Design, Commissioning, Development

O Provide Tools for Effective Use: Monitoring, Collaboration
€ Participate in Standards Development; Open Tools

[ Advanced TCP stacks; Grid systems
€ Workshops and Tutorials/Training Sessions

[ For Example: Rio DD and HEPGrid Workshop, February 2004
¢ Raise General Awareness of the Problem; Approaches to Solutions



+ HEP is Learning How to Use Gbps Networks Fully:
% [#{#| Factor of ~500 Gain in Max. Sustained TCP Thruput
in 4 Years, On Some US+Transoceanic Routes

——Ee==r-l, - H
—F 90 ] e IR =, FE
= [ | [EE— N R N ]
= 7o : "
= e =d - -
E = =0 fﬁfi”%ﬁ’_‘
= o ——
< O - . .. ::‘“T_F ...... e |
A —Ad94 FA1=rr— 0 Lol e el B S pEar—01 rdo~~—10 1

+ 9/01 105 Mbps 30 Streams: SLAC-IN2P3; 102 Mbps 1 Stream CIT-CERN
¢ 5/20/02 450-600 Mbps SLAC-Manchester on OC12 with ~100 Streams

¢ 6/1/02 290 Mbps Chicago-CERN One Stream on OC12

¢ 9/02 850, 1350, 1900 Mbps Chicago-CERN 1,2,3 GbE Streams, 2.5G Link

¢ 11/02 [LSR] 930 Mbps in 1 Stream California-CERN, and California-AMS
FAST TCP 9.4 Gbps in 10 Flows California-Chicago

¢ 2/03 [LSR] 2.38 Gbps in 1 Stream California-Geneva (99% Link Utilization)
¢ 5/03 [LSR] 0.94 Gbps IPv6 in 1 Stream Chicago- Geneva
¢ TW & SC2003: 5.65 Gbps (IPv4), 4.0 Gbps (IPv6) in 1 Stream Over 11,000 km




